The Crystal Structure of myo-Inositol-2-phosphate Monohydrate

By C.S. Yoo, G. Blank, J. Pletcher and M. Sax
The Department of Crystallography, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A. and Biocrystallography Laboratory, Veterans Administration Hospital, Pittsburgh, Pennsylvania 15240, U.S.A.

(Received 12 November 1973; accepted 4 April 1974)

Abstract

The crystal and molecular structure of myo-inositol-2-phosphate monohydrate ($\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{9} \mathrm{P} . \mathrm{H}_{2} \mathrm{O}$) has been determined from X-ray diffraction data. It crystallizes in the monoclinic space group $P 2_{1} / c$ with four molecules in a unit cell of dimensions $a=6 \cdot 810$ (2), $b=16 \cdot 548$ (4), $c=12 \cdot 536$ (5) \AA and $\beta=133 \cdot 26$ (2). The intensities of 1680 reflections were measured on a four-circle automated diffractometer using $\mathrm{Cu} K \alpha$ radiation. The structure was refined by full-matrix least-squares methods to give $R=0.045$ for all reflections. The ring conformation in the molecule is found in the expected chair form, with one axial ester oxygen and five equatorial hydroxyl groups. The phosphate does not obey the m symmetry of the cyclohexane ring, nor does the hydrogen-bonding scheme. All of the hydroxyls are hydrogen-bond donors to acceptors situated on that side of the ring to which the phosphate is attached. The water molecule participates in four hydrogen bonds in an approximately tetrahedral arrangement.

Introduction

myo-Inositol-2-phosphate is the terminal monophosphate produced by the enzymatic hydrolysis of phytic acid by plant enzymes (Tomlinson \& Ballou, 1962), and exhibits more resistance to acid hydrolysis than its isomers (Cosgrove, 1963). myo-Inositol-1-phosphate occurs in phosphoinositides and can be produced from myo-inositol-2-phosphate by acid-catalyzed isomerization via a cyclic intermediate (Pizer \& Ballou, 1959). To what extent this chemical chain is dependent upon the conformational and hydrogen-bonding properties of the molecule is uncertain. A precise description of these parameters was sought to help clarify their role in its chemistry.

Experimental

myo-Inositol-2-phosphate monohydrate was prepared by the enzymatic hydrolysis of phytate according to the

Fig. 1. A thermal-ellipsoid plot (Johnson, 1965) at the 50% probability level of myo-inositol-2-phosphate monohydrate showing the numbering scheme of the atoms.
procedure of McCormick \& Carter (1952). White, acicular crystals elongated about \mathbf{b} were obtained by cooling an ethanol-water solution to $\sim 5^{\circ} \mathrm{C}$. Many of the crystals gave diffraction patterns showing extensive streaking. Oscillation and Weissenberg photographs showed monoclinic symmetry with systematic absences $0 k 0(k=2 n+1)$ and $h 0 l(l=2 n+1)$, uniquely determining that the crystal belongs to space group $P 2_{1} / c$. The crystal used for collecting diffraction data had a length of 0.3 mm and cross-section of $0.05 \times 0.02 \mathrm{~mm}$ and was mounted on an automated FACS I Picker diffractometer with its b axis nearly parallel to the φ axis. The cell dimensions were determined from a leastsquares analysis of the setting angles for 12 centered reflections (2θ ranged from 36 to 61°) measured on the diffractometer using the Picker DOS Software System (1972). Graphite-monochromated $\mathrm{Cu} K \alpha$ radiation was used throughout the analysis. Crystal data are given in Table 1. Integrated intensities were measured using a $\theta: 2 \theta$ scan over a 1.5° range with a scan speed of $1^{\circ} \mathrm{min}^{-1}$ in 2θ. The background count was accumulated for 30 s at each end of the scan range. Three standard reflections, which were monitored after every 40 reflections, fluctuated within a 2% range during the data collection. The intensity data were corrected by means of the observed variations in the standards (Shiono, 1971a). All of the 1680 independent reflections with $2 \theta \leq 130^{\circ}$ were measured. As the intensities were being collected, the data were reduced simultaneously to structure amplitudes using the appropriate Lorentzpolarization factor for graphite-monochromated ($2 \theta_{m}$ $=26 \cdot 16^{\circ}$) radiation (Picker DOS Software System, 1972). Of the independent reflections, 196 reflections were considered to be unobserved when $|F| \leq 6 \sigma(F)$ where $|F|$ is the structure amplitude and $\sigma(F)$ is given by $\left(\frac{1}{2} \mathrm{Lp}|F|\right) \sigma(I) ; \mathrm{Lp}$ is the Lorentz-polarization factor, $\sigma(I)=\left[I_{t}+K^{2} B\right]^{1 / 2}, I=I_{t}-B_{t}, B_{t}=K B, B=\left(b_{1}+b_{2}\right)$, $K=t_{1} / 2 t_{2}, I_{t}=(10 S+5), b_{1}=\left(10 C_{1}+5\right), b_{2}=\left(10 C_{2}+5\right)$,
$S=$ the number of decacounts accumulated during the scan requiring time t_{1}, and C_{1} and $C_{2}=$ the background decacounts accumulated in time t_{2} at either end of the scan range. Absorption and extinction corrections were not applied to the data.

Table 1. Crystal data
for myo-inositol-2-phosphate monohydrate

$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{OH})_{5} . \mathrm{H}_{2} \mathrm{PO}_{4} . \mathrm{H}_{2} \mathrm{O}$$=6.810(2) \AA$		$\begin{aligned} & \text { M.W. } 278 \cdot 18 \\ & \lambda(\mathrm{Cu} K \alpha)=1 \cdot 5418 \AA \\ & \mu(\mathrm{Cu} K \alpha)=28 \cdot 8 \mathrm{~cm}^{-1} \end{aligned}$
$b=16.548$ (4)	measuredat $24^{\circ} \mathrm{C}$	
$\beta=133.26$ (2) ${ }^{\circ}$		$\varrho_{0}=1.791 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flota-
		tion in a mixture of bromo
		form and n-hexane at $20^{\circ} \mathrm{C}$)
$Z=4$		$\varrho_{c}=1.795 \mathrm{~g} \mathrm{~cm}^{-3}$
$V=1028 \cdot 8 \AA^{3}$		m.p. $\simeq 190^{\circ}$ (decomposed)

Space group: $P 2_{1} / c$ from systematic absences $0 k 0$ for $k=$ $2 n+1, h 0 l$ for $l=2 n+1$

Structure determination and refinement

After the structure amplitudes were normalized to E values by means of a Wilson plot, the position of the
phosphorus atom was determined from a three-dimensional sharpened origin-removed Patterson function (Shiono, 1971b) synthesized with the ($E^{2}-1$) coefficients of 1484 observed reflections. Structure factors calculated with the contribution from the phosphorus atom alone gave an R value of $0 \cdot 47$. The electron density map phased on the phosphorus atom revealed oxygen atoms in the phosphate group and part of the cyclohexane ring. All remaining light atoms except for hydrogen atoms were then located unambiguously from a difference Fourier synthesis. One cycle of blockdiagonal least-squares refinement on the IBM 1130 (Shiono, 1971a) gave an R value of 0.29 for all reflections, which was reduced to 0.10 by a full-matrix isotropic least-squares cycle. At this stage, all hydrogen atoms could be located in a difference Fourier map. Positional parameters for the hydrogen atoms were included as variables in subsequent cycles of refinement. However, the hydrogen thermal parameters were not refined but were set equal to those of atoms to which the hydrogen atoms were bonded. The refinement process was continued until no parameter shifted

Fig. 2. A stereo drawing of the molecule and its closest neighbors.

Table 2. Atomic parameters and their e.s.d.'s
Fractional coordinates are $\times 10^{3}$ for hydrogen atoms, $\times 10^{4}$ for other atoms. Thermal parameters, $\times 10^{4}$, are in the form $\exp \left[-\left(h^{2} \beta_{11}+\cdots 2 k l \beta_{23}\right)\right]$.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
P	7947 (1)	1024 (0.3)	4768 (0.5)	125 (3)	$14(0 \cdot 3)$	46 (0.8)	0 (0.5)	56 (1)	$1(0 \cdot 3)$
$\mathrm{O} X(1)$	6352 (3)	1690 (1)	4769 (2)	205 (7)	21 (0.7)	95 (2)	0 (2)	110 (4)	-4(0.9)
$\mathrm{O} X(2)$	7019 (3)	1045 (0.8)	3212 (2)	179 (7)	17 (0.6)	57 (2)	-2 (1)	72 (3)	1 (0.8)
OX (3)	10930 (3)	1306 (1)	5940 (2)	155 (7)	21 (0.7)	58 (2)	-6 (2)	56 (3)	0 (0.9)
OX(4)	7568 (3)	197 (1)	5027 (2)	249 (7)	19 (0.6)	81 (2)	-3(2)	103 (3)	5 (0.9)
$\mathrm{C}(1)$	4619 (4)	2026 (1)	1218 (3)	168 (9)	16 (0.8)	70 (3)	9 (2)	84 (5)	8 (1)
C(2)	7337 (4)	1772 (1)	2686 (2)	159 (9)	13 (0.8)	57 (3)	-6 (2)	69 (4)	-2 (1)
C(3)	9344 (4)	1586 (1)	2538 (2)	139 (8)	17 (0.8)	58 (3)	-3(2)	65 (4)	1 (1)
C(4)	8242 (5)	990 (1)	1307 (3)	158 (9)	18 (0.8)	68 (3)	-2 (2)	85 (5)	-1 (1)
C(5)	5536 (5)	1273 (1)	-113 (2)	203 (9)	17 (0.8)	53 (3)	-4 (2)	71 (4)	-2 (1)
C(6)	3521 (4)	1384 (1)	43 (2)	134 (8)	18 (0.8)	57 (3)	5 (2)	54 (4)	7 (1)
$\mathrm{O}(1)$	2741 (3)	2231 (1)	1346 (2)	216 (7)	21 (0.7)	102 (2)	15 (2)	121 (4)	5 (1)
$\mathrm{O}(3)$	11834 (3)	1311 (1)	3893 (2)	141 (6)	23 (0.7)	69 (2)	1 (2)	63 (3)	5 (1)
$\mathrm{O}(4)$	10087 (4)	940 (1)	1119 (2)	251 (8)	24 (0.7)	104 (3)	8 (2)	137 (4)	1 (1)
$\mathrm{O}(5)$	4595 (3)	684 (1)	-1206 (2)	255 (7)	22 (0.7)	62 (2)	-3(2)	83 (4)	-8(1)
$\mathrm{O}(6)$	1023 (3)	1635 (1)	-1326 (2)	160 (7)	26 (0.7)	69 (2)	8 (2)	47 (3)	8 (1)
OW	2833 (4)	-478 (1)	2232 (2)	227 (8)	$31(0 \cdot 8)$	89 (2)	3 (2)	99 (4)	6 (1)

Table 2 (cont.)

H(Cl)	$489(5)$	$250(2)$	$98(3)$
$\mathbf{H}(\mathrm{C} 2)$	$800(5)$	$219(2)$	$335(3)$
$\mathbf{H}(\mathrm{C} 3)$	$979(5)$	$211(2)$	$238(3)$
H(C4)	$802(5)$	$47(2)$	$158(3)$
H(C5)	$571(5)$	$182(2)$	$-46(3)$
H(C6)	$329(5)$	$90(2)$	$33(3)$
H(O1)	$212(6)$	$176(2)$	$135(3)$
H(O3)	$1164(6)$	$90(2)$	$408(3)$
H(O4)	$1086(6)$	$54(2)$	$1456(4)$
H(O5)	$316(6)$	$36(2)$	$-215(3)$
H(O6)	$-23(6)$	$127(2)$	$-167(3)$
H(OX1)	$489(6)$	$155(2)$	$444(3)$
H(OX3)	$1110(5)$	$180(2)$	$592(3)$
H1(OW)	$339(6)$	$-59(2)$	$178(4)$
H2(OW)	$417(6)$	$-35(2)$	$314(4)$

by more than 1% of its estimated standard deviation. The final cycle gave an R value of 0.045 for all reflections and 0.041 for 1484 observed reflections. In the refinement, the Hughes (1941) weighting scheme was employed, with $\sigma=F / 11 \cdot 0$ for $F>11 \cdot 0, \sigma=1$ for $F \leq 11 \cdot 0$ and zero weight for unobserved reflections. The function minimized was $\sum w\left(\left|F_{o}\right|-k\left|F_{c}\right|\right)^{2}$ where k is a single scale factor and $w=1 / \sigma^{2}$. Atomic form factors for P, O and C were taken from International Tables for X-ray Crystallography (1962) and hydrogen scattering factors were those of Stewart, Davidson \& Simpson (1965).

The final positional and thermal parameters, and their estimated standard deviations are given in Table 2.*

[^0]

Fig. 3. Conformational angles for myo-inositol (lower diagram) and the myo-inositol moiety in myo-inositol-2-phosphate monohydrate (upper diagram).

Discussion

The molecular configuration and conformation of myo-inositol-2-phosphate monohydrate are illustrated in Fig. 1. The ring conformation in the molecule, like that of myo-inositol (Rabinowitz \& Kraut, 1964) and myoinositol dihydrate (Lomer, Miller \& Beevers, 1963), is found in the chair form, and all the hydroxyl groups are equatorial except for the ester oxygen atom $\mathrm{O} X(2)$. The mirror symmetry through $\mathrm{C}(2), \mathrm{O} X(2), \mathrm{C}(5)$ and $\mathrm{O}(5)$, which should be exact for the unesterified free myo-inositol molecule is approximately maintained in this structure if $\mathrm{P}, \mathrm{O} X(1), \mathrm{O} X(3)$ and $\mathrm{O} X(4)$ are not included. The least-squares planes for the planar part of the cyclohexane ring and the plane passing through $\mathrm{C}(2), \mathrm{OX}(2), \mathrm{C}(5)$ and $\mathrm{O}(5)$ are listed in Table 3. The dihedral angle between these two planes is 89.8°. The phosphate group is slightly rotated about the $\mathrm{C}(2)-$ $\mathrm{O} X(2)$ bond. This is probably due to the asymmetrical hydrogen-bonding environment around the phosphate group in the crystal as shown in Fig. 2. The torsion angles around the $\mathrm{C}(2)-\mathrm{O} X(2)$ bond and $\mathrm{O} X(2)-\mathrm{P}$ bond of one conformer are: $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O} X(2)-\mathrm{P}-123.7^{\circ}$; $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O} X(2)-\mathrm{P} \quad 115 \cdot 3^{\circ} ; \quad \mathrm{C}(2)-\mathrm{O} X(2)-\mathrm{P}-\mathrm{O} X(4)$ $-175 \cdot 5^{\circ} ; \mathrm{C}(2)-\mathrm{O} X(2)-\mathrm{P}-\mathrm{O} X(1) \quad 59 \cdot 1^{\circ}$; and $\mathrm{C}(2)-$ $\mathrm{O} X(2)-\mathrm{P}-\mathrm{O} X(3)-53 \cdot 0^{\circ}$. The conformation angles in $m y o$-inositol (Rabinowitz \& Kraut, 1964) and the myo-inositol moiety for myo-inositol-2-phosphate monohydrate are compared in Fig. 3.

Table 3. The least-squares planes for two mutually perpendicular planes in myo-inositol-2-phosphate mono-

hydrate

Coefficients $\times 10^{4}$ in $A x+B y+C z-D=0$, referred to the crystallographic axes (x, y, z in \AA). Atoms in bold type are included in the calculation of least-squares planes. Displacements from the plane are in $\AA \times 10^{3}$.

```
Plane 1: \(A=5120, B=6903, C=-7232, D=27949\)
    C(1) 26, C(3) -26, C(4) 26, C(6) -26, C(2) -647, C(5) 693,
    \(\mathrm{O}(1)-511, \mathrm{O} X(2)-2065, \mathrm{O}(3)-699, \mathrm{O}(4) 782, \mathrm{O}(5) 682\),
    \(\mathrm{O}(6) 632, \mathrm{H}(\mathrm{Cl}) 870, \mathrm{H}(\mathrm{C} 2)-540, \mathrm{H}(\mathrm{C} 3) 871, \mathrm{H}(\mathrm{C} 4)-897\),
    H(C5) 1691, H(C6) - 917
Plane 2: \(A=8372, B=2615, C=-2241, D=2653\)
    \(\mathrm{OX}(2)-5, \mathrm{C}(2) 10, \mathrm{C}(5)-15, \mathrm{O}(5) 10, \mathrm{C}(1)-1238\),
    \(\mathrm{C}(3)\) 1276, C(4) 1251, C(6) -1256, O(1) -2433, O(3) 2435,
    \(\mathrm{O}(4) 2378, \mathrm{O}(6)-2404, \mathrm{H}(\mathrm{Cl})-1220, \mathrm{H}(\mathrm{C} 2) 23, \mathrm{H}(\mathrm{C} 3)\)
    1350, H(C4) 1273, H(C5) - 51, H(C6) - 1257, H(O1) -2582,
    H(O3) 2451, H(O4) 2895, H(O5) - 407, H(O6) - 2868, P 96,
    \(\mathrm{O} X(1)-1102, \mathrm{O} X(3) 1345, \mathrm{O} X(4) 165\)
```

Intramolecular bond distances and angles with their associated estimated standard deviations are shown in Fig. 4. The $\mathrm{C}-\mathrm{C}$ bond lengths which range from 1.512 to $1.531 \AA$ with a mean of $1.524 \AA$ are not significantly different from those of myo-inositol (Rabinowitz \& Kraut, 1964), where the range is 1.508 to $1.533 \AA$ with a mean of $1.521 \AA$. The $\mathrm{C}-\mathrm{OH}$ bonds vary from 1.418 to $1.434 \AA$. The shortest bond, $\mathrm{C}(6)-\mathrm{O}(6)$ at $1.418 \AA$, is associated with the only hydroxyl which donates its hydrogen but does not accept a hydrogen bond. A
similar tendency is observed in epi-inositol (Jeffrey \& Kim, 1971). The phosphate group is essentially tetrahedral, with O-P-O angles ranging from 104.3 to $115 \cdot 7^{\circ}$. The distances P-OX(1) and P-OX(3), $1 \cdot 548$ and $1.553 \AA$ respectively, are normal for phosphorushydroxyl bonds. The P-OX(4) bond, $1 \cdot 468 \AA$, exhibits additional multiple-bond character expected for the nonprotonated oxygen.

The molecules are linked by a system of intermolecular hydrogen bonds: four of the equatorial and one of the phosphate OH groups are involved both as donors and acceptors. The unprotonated oxygen in
the phosphate group accepts two hydrogen bonds, while the remaining equatorial hydroxyl and phosphate OH groups act as donors only. The hydrogens and the non-bonding oxygen electrons of the water molecule all participate in hydrogen bonds which form an approximately tetrahedral arrangement. The average of these angles is 108.9°. The hydrogen-bonding scheme around the molecule and overall packing scheme in the crystal are illustrated in Figs. 2 and 5. The hydrogen-bond distances and angles are given in Table 4. The intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ distances range from 2.535 to $2 \cdot 907 \AA$.

Fig. 4. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in the molecule. The estimated standard deviations are given in parentheses.

Fig. 5. Stereo diagram of myo-inositol-2-phosphate monohydrate as drawn by ORTEP (Johnson, 1965). View is down the a axis with hydrogen bonding shown by thin lines.

Table 4. Hydrogen-bond distances and angles in myo-inositol-2-phosphate monohydrate

				Symmetry operation	
i	k	$d_{\mathrm{O}} \cdots \mathrm{o}$	$d_{\mathrm{O}} \cdots \mathrm{H}$	$\angle i J k$	of k^{*}

* Reference point is atom i at $555 \cdot 1$. The first three digits code a lattice translation, e.g. $466 \cdot 1$ is $-a+b+c$ from $555 \cdot 1$. The last digit indicates one of the following operations:

$$
\begin{array}{ll}
1: x, y, z & 2: \bar{x}, \bar{y}, \bar{z} \\
3: x, \frac{1}{2}-y, \frac{1}{2}+z &
\end{array}
$$

This research was supported by the U.S. Public Health Service, National Institute of Health, under Grant No. NS-09178. The computing facilities of the Department of Crystallography and Computing

Center of University of Pittsburgh were used throughout this research.

References

Cosgrove, D. J. (1963). Biochem. J. 89, 172-175.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737-1752.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-207. Birmingham: Kynoch Press.
Jeffrey, G. A. \& Kim, H. S. (1971). Acta Cryst. B27, 1812-1817.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
lomer, T. R., Miller, A. \& Beevers, C. A. (1963). Acta Cryst. 16, 264-268.
McCormick, M. H. \& Carter, H. E. (1952). Biochem. Prep. 2, 65-68.
Picker DOS Software System (1972). Picker Corporation, Cleveland, Ohio.
Pizer, F. L. \& Ballou, C. E. (1959). J. Amer. Chem. Soc. 81, 915-921.
Rabinowitz, I. N. \& Kraut, J. (1964). Acta Cryst. 17, 159168.

Shiono, R. (1971a). Crystallographic Computing Programs for the IBM 1130 System. Technical Report No. 49, Department of Crystallography, Univ. of Pittsburgh, Pittsburgh, Pa.
Shiono, R. (1971b) Crystallographic Computing Program for IBM 7090. Technical Report No. 48, Department of Crystallography, Univ. of Pittsburgh, Pittsburgh, Pa.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Tomlinson, R. V. \& Ballou, C. E. (1962). Biochemistry, 1, 116-171.

The Crystal and Molecular Structure of
 Diaquo- μ-triethylenetetraminehexaacetatodichromium(III) hexahydrate, [Cr_{2} TTHA. $\mathbf{2} \mathrm{H}_{2} \mathrm{O}$]. $\mathbf{6} \mathrm{H}_{2} \mathrm{O}$

By G.D. Fallon and B. M. Gatehouse
Department of Chemistry, Monash University, Clayton, Victoria, Australia 3168

(Received 11 April 1974; accepted 16 April 1974)
The title compound crystallizes in space group $P 2_{1} / c$ with $a=8.634$ (5), $b=12.606$ (6), $c=13.867$ (7) \AA, $\beta=99.67(8)^{\circ}, D_{m}=1.63(1), D_{c}=1.64 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=2$. The structure has been determined by direct and Fourier methods, refined to $R=0.043$ from diffractometer data (1952 observed reflexions), and consists of discrete binuclear units which are required crystallographically to be centrosymmetric. The TTHA ion (triethylenetetraminehexaacetate) acts as a pentadentate ligand to each of the chromium atoms, the octahedra of which are completed by water molecules. The bond distances about each chromium are $\mathrm{Cr}-\mathrm{N}, 2 \cdot 120$ and $2.042 ; \mathrm{Cr}-\mathrm{OH}_{2}, 1.997 ; \mathrm{Cr}-\mathrm{O}, 1 \cdot 946,1.959$ and $1.943 \AA$.

Introduction

In the last decade many structural studies have been carried out on the coordinating ability of the potential hexadentate ligand EDTA (Richards, Pedersen, Silver-
ton \& Hoard, 1964; Lin, Leggett \& Wing, 1973; Hamor, Hamor \& Hoard, 1964). It has been found that EDTA can act as a pentadentate ligand, one $-\mathrm{CH}_{2}-$ COOH arm being free (Stephens, 1969; Smith \& Hoard, 1959), as a hexadentate ligand in six- (Weakliem \&

[^0]: * A list of observed and calculated structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30434 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ , England.

